A Specht Module Analog for the Rook Monoid

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Specht Module Analog for the Rook Monoid

The wealth of beautiful combinatorics that arise in the representation theory of the symmetric group is well-known. In this paper, we analyze the representations of a related algebraic structure called the rook monoid from a combinatorial angle. In particular, we give a combinatorial construction of the irreducible representations of the rook monoid. Since the rook monoid contains the symmetric...

متن کامل

Representations of the rook monoid

Let n be a positive integer and let n = {1, . . . , n}. Let R be the set of all oneto-one maps σ with domain I (σ ) ⊆ n and range J (σ) ⊆ n. If i ∈ I (σ ) let iσ denote the image of i under σ . There is an associative product (σ, τ ) → στ on R defined by composition of maps: i(στ)= (iσ )τ if i ∈ I (σ ) and iσ ∈ I (τ ). Thus the domain I (στ) consists of all i ∈ I (σ ) such that iσ ∈ I (τ ). The...

متن کامل

Fast Fourier Transforms for the Rook Monoid

We define the notion of the Fourier transform for the rook monoid (also called the symmetric inverse semigroup) and provide two efficient divideand-conquer algorithms (fast Fourier transforms, or FFTs) for computing it. This paper marks the first extension of group FFTs to non-group semigroups.

متن کامل

Character Formulas for q-Rook Monoid Algebras

The q-rook monoid Rn(q) is a semisimple C(q)-algebra that specializes when q → 1 to C[Rn], where Rn is the monoid of n × n matrices with entries from {0, 1} and at most one nonzero entry in each row and column. We use a Schur-Weyl duality between Rn(q) and the quantum general linear group Uqgl(r ) to compute a Frobenius formula, in the ring of symmetric functions, for the irreducible characters...

متن کامل

Pattern Avoidance in the Rook Monoid

We consider two types of pattern avoidance in the rook monoid, i.e. the set of 0–1 square matrices with at most one nonzero entry in each row and each column. For one-dimensional rook patterns, we completely characterize monoid elements avoiding a single pattern of length at most three and develop an enumeration scheme algorithm to study rook placements avoiding sets of patterns.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2001

ISSN: 1077-8926

DOI: 10.37236/1619